与传统的偏微分方程(PDE)求解器相比,物理知识的神经网络(PINN)可以实现较低的发展和解决成本,例如重建物理领域并解决逆问题。由于参数共享的优点,空间特征提取和低推理成本,卷积神经网络(CNN)越来越多地用于PINN中。为了使卷积PINN适应不同方程式,研究人员必须花费大量时间来调整关键的超参数。此外,尚不清楚有限差异精度,模型复杂性和网格分辨率对卷积PINN的预测结果的影响。为了填补上述研究差距,在本文中,(1)构建了多率的场pinn(MRF-PINN)模型,以适应不同的方程类型和网格分辨率,而无需手动调整。(2) MRF-PINN在三个典型的线性PDE(椭圆形,抛物线,双曲线)和非线性PDE(Navier-Stokes方程)中进行了验证。 (3)分析每个接受场对最终MRF-PINN结果的贡献,并测试有限差异精度,模型复杂性(通道数)和MES​​H分辨率对MRF-PINN结果的影响。本文表明,MRF-PINN可以适应完全不同的方程式类型和网格分辨率,而无需进行任何高参数调整。此外,在高阶有限差,较大的通道数和高网格分辨率下,解决误差显着降低,预计将成为一般卷积PINN方案。
translated by 谷歌翻译
基于部分微分方程的物理模拟通常会生成空间场结果,这些结果可用于计算系统设计和优化系统的特定属性。由于模拟的密集计算负担,替代模型将低维输入映射到空间场通常是基于相对较小的数据集构建的。为了解决预测整个空间场的挑战,流行的核心区域线性线性模型(LMC)可以在高维空间场输出中解散复杂的相关性,并提供准确的预测。但是,如果通过基本函数与潜在过程的线性组合无法很好地近似空间场,则LMC会失败。在本文中,我们通过引入可演化的神经网络来线性化高度复杂和非线性空间场,以便LMC可以轻松地将非线性问题概括为非线性问题,同时保留了放大学性和可伸缩性。几个现实世界的应用程序表明,E-LMC可以有效利用空间相关性,显示出比原始LMC的最大提高约40%,并且表现优于其他最先进的空间场模型。
translated by 谷歌翻译
在辅助和自动驾驶系统的各种传感器中,即使在不利的天气或照明条件下,汽车雷达也被认为是一种健壮且低成本的解决方案。随着雷达技术的最新发展和开源的注释数据集,带有雷达信号的语义分割变得非常有前途。但是,现有的方法在计算上是昂贵的,或者通过平均将其减少到2D平面,从原始3D雷达信号中丢弃了大量的有价值的信息。在这项工作中,我们引入了Erase-Net,这是一个有效的雷达分割网络,以语义上的原始雷达信号。我们方法的核心是新型的检测到原始雷达信号的段方法。它首先检测每个对象的中心点,然后提取紧凑的雷达信号表示,最后执行语义分割。我们表明,与最新技术(SOTA)技术相比,我们的方法可以在雷达语义分割任务上实现卓越的性能。此外,我们的方法需要减少20倍的计算资源。最后,我们表明所提出的擦除网络可以被40%压缩而不会造成大幅损失,这比SOTA网络大得多,这使其成为实用汽车应用的更有希望的候选人。
translated by 谷歌翻译
根据历史运动序列预测未来的运动是计算机视觉中的一个基本问题,并且在自主驾驶和机器人技术中具有广泛的应用。最近的一些作品表明,图形卷积网络(GCN)有助于对不同关节之间的关系进行建模。但是,考虑到人类运动数据中的变体和各种作用类型,由于解耦的建模策略,很难描绘时空关系的交叉依赖性,这也可能加剧了不足的概括问题。因此,我们提出时空门控速度ADJACENCY GCN(GAGCN)学习对各种作用类型的复杂时空依赖性。具体而言,我们采用门控网络来通过混合候选时空邻接矩阵获得的可训练的自适应邻接矩阵来增强GCN的概括。此外,GAGCN通过平衡时空建模的重量并融合了脱钩时空特征来解决空间和时间的交叉依赖性。对人类360万,积聚和3DPW的广泛实验表明,GAGCN在短期和长期预测中都能达到最先进的表现。
translated by 谷歌翻译
我们研究了无模型增强学习的问题,该问题通常按照广义政策迭代(GPI)的原则解决。尽管GPI通常是策略评估和策略改进之间的相互作用,但大多数传统的无模型方法都假定粒度的独立性和GPI步骤的其他细节,尽管它们之间存在固有的联系。在本文中,我们提出了一种方法,该方法使政策评估和策略改进之间的不一致性正常,从而导致冲突的GPI解决方案,并减少了功能近似错误。为此,我们制定了一种新颖的学习范式,其中采取政策评估步骤等同于对执行政策改进的一些补偿,从而有效地减轻了两个GPI步骤之间的梯度冲突。我们还表明,我们提出的解决方案的形式等同于执行熵登记的策略改进,因此阻止该政策被困在次优的解决方案中。我们进行了广泛的实验,以评估我们在街机学习环境(ALE)方面的方法。经验结果表明,我们的方法在主要评估领域的表现优于几个强基础。
translated by 谷歌翻译
解释性对于理解深神经网络(DNN)的内部工作至关重要,并且许多解释方法产生显着图,这些图突出了输入图像的一部分,这些图像对DNN的预测有了最大的影响。在本文中,我们设计了一种后门攻击,该攻击改变了网络为输入图像而改变的显着图,仅带有注入的触发器,而肉眼看不见,同时保持预测准确性。该攻击依赖于将中毒的数据注入训练数据集中。显着性图被合并到用于训练深层模型的目标函数的惩罚项中,其对模型训练的影响基于触发器的存在。我们设计了两种类型的攻击:有针对性的攻击,该攻击可以实施显着性图的特定修改和无靶向攻击的特定攻击,而当原始显着性图的顶部像素的重要性得分大大降低时。我们对针对各种深度学习体系结构的基于梯度和无梯度解释方法进行的后门攻击进行经验评估。我们表明,在部署不信任来源开发的深度学习模型时,我们的攻击构成了严重的安全威胁。最后,在补充中,我们证明了所提出的方法可以在倒置的设置中使用,在这种情况下,只有在存在触发器的情况下才能获得正确的显着性图(键),从而有效地使解释系统仅适用于选定的用户。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译